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Abstract-The local heat transfer coefficient for laminar gravity controlled Nusselt type film condensation 
is calculated analytically. The area average mean value is calculated by numerical integration of the locaf 
value over the condensation surface or, altemativeiy, by integrating the condensate flow rate along the 
border of the heat transfer area. The results for the elliptical tube of fmite and infinite length are compared 
with those obtained for an equivalent cireuiar tube of equal surface. The elliptical deformation (Battened 

at tfie side) increases the heat transfer coetkient, especially with short tubes. 

1. INTRODUCTfON 

~~~~~~~~~N inside elliptical tubes Is frequentfy 
applied in air cooled power station condensers, and 
condensation heat transfer in such inclined tubes is 
subject to recent experimental research [I]. 

The estimation of heat transfer coefficients using 
known calculation methods is unreliable and special 
calculation procedures or formufas have still to be 
developed. 

As a first step in this direction the Nusselt type 
lamlnar film condensatian [2] in or on inclined ellip 
tical tubes is investigated analytically in this paper. 
Hassan and Jacob I31 calculated the special case of a 
circular cylinder and their numerical results compare 
well with the more general (closed form) solution, 
presented in this paper” 

The same assumptians are made as by Hassan and 
Jacab. The additional minor effect of surface tension 
on film Aow, which occurs mainly in non-circular 
tubes, is neglected here, 

2. DERlVATlON OF THE OIFFERENTIAL 
EOUATION FOR THE FILM THKXNESS 

An inchned elhptical tube of finite length and uni- 
form wail surface temperature is considered. One axis 
of the cross-s~t~ona~ ellipse is horizontal. 

Consider an incrementaf plate of width dx and 
length dUlying on the tube at a radial angle fi, whereas 
the tube is inclined fram the horizontal plane at an 
angle $ (Fig. 1). One side of the plane {tube surface), 
in the positive y direction, is exposed to saturated 
vapour at uniform temperature T,, that is greater than 
the surface temperature TK’. 

Because of the inclination, the condensate film is 
simultaneously drained to the x and U directions, 
respectively. 

Integrating equations (1) with respect to Y and 
utihzing the classical boundary conditions of no slip 
at the solid interface yields : 

The heat conducted through the film to the 
incremental area dx * dU causes a change of con- 
densate flow (Fig. 2) 

+ ; (Cup4 dx) dL’ 
> 

(3) 

where the incremental periphery (Fig. 3) 

dU = q’(1 -s2 sin’ 4) d$ (4) 

and the eccentricity 

s2 = (a” - b’)/a2. cv 

Combining equations (2 j(5) yields the qua&near 
partial differential equation 
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NOMENCLATURE 

a. I? semi axis of ellipse B angle 
C , , c2 integration constants 7 angle 

9 gravitational acceleration 6 film thickness 
L partial circumference A finite difference 
ii2 mass flux i: eccentricity 
f latent heat of condensation tl condensate viscosity 
R radius i thermal conductivity of condensate 
f dummy variable for (f, P density of condensate 
T temperature eccentric angle 
II coordinate in circumferential direction, z angle of inclination. 

circumference 
c dummy variable for X Subscripts 
%V velocity of the actual ellipse 
I coordinate, tube length Eti KREIS of the equivalent circular tube 
X dimensionless tube length L, for the partial circumference 

?’ coordinate S at saturation conditions 
Z dimensionless film thickness. W at wall surface 

.Y in x-direction 
Greek symbols U in U-direction 

ff heat transfer coefficient i/2 one half of. / 
.i 

for the local dimensionless condensate film thickness Z=O Pb) 

(7) .Y = m 
r:z 
ix = 0. PC) 

as function of the dimensionless tube length 3. SOLUTION AND CALCULAl-ION OF THE 

HEAT TRANSFER COEFFICIENT 

(8) 
3.1. Infinite tube Imgth 

and the angle 4. 

First the simple limiting case of an infinite length 
X = cc is considered. 

At the end of this tube the film flow is fully 

Fro 1. Inclined elliptical tube in the gravity field. 
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FIG. 2. Elementary volume of condensate film. 

developed and the local film thickness Z is only a 
function of 4. 

Thus the boundary condition (SC) reduces equation 
(6) to the ordinary linear inhomogeneous differential 
equation 

dZ 4 Z 4 1-a’sin 

d&+3(1-e2sin2$)tan4-5 sin4 = 
0. 

(10) 

In the special case of a circular tube of radius 
R = a = b this equation simplifies to the well known 
equation of Nusselt [2]. 

dZ4Z 41 _-__~Oo. 
&J+S tari4 3 sin4 (11) 

In the more general case of an elliptical inclined tube 
of infinite length one finds from equation (10) and the 

FIG. 3. Cross-section of tube with condensate film. 

boundary condition 4 = 0 + (dZ/dd) = 0 the ana- 
lytical solution 

z=4 J(l-a2sin24) 413 @ 

3 ( sin f$ )S 
sin v3 t 

0 

x(l---~~sin*t)“~ dt. (12) 

From the local film thickness 

the local heat transfer coefficient 

1 
a=- 

6 (14) 

can be calculated, assuming a linear temperature pro- 
file in the film. 

Integrating along the periphery U (U,,* = one half 
of the total circumferen@ yields the area average heat 
transfer coefficient 

1 = 
6, = - J L 0 

u(U) dU 0 < L < U,,, (15) 

of an inclined elliptical tube of infinite length. 

3.2. Finite tube length 

In the general case of finite tube length equation 
(6) has to be solved taking the boundary conditions 
according to equations (9) into account. 

An analytical solution is possible applying the 
method of characteristics. The subsidiary equations 
read : 

dX= d4 dZ 
sin+ =4 

( 

cos Q, 
1 --a* sin* 4 3 1-(l-e2sin2~)2Z >’ 

(16) 

Rearranging and integrating yields 
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X = s2 cos 4fln [c, tan (d/2)] (17) 

and 

(S 
9 

X sin’!‘t(l -a’sin’t)” dt+c, 
0 ) 

(18) 

Equation (17) describes the flow path of the con- 
densate on the condensation surface. 

Incorporating in equations (17) and (18) the 
boundary condition according to equation (9b) leads 
finally to 

z = ” 
3 

X sin’:3 t(l -&‘sin’ t)‘13 dt 

s 

d’ 
_ sin”‘t(1-8’ sin2 t)‘:2 dt (19) 

0 

Comparing with equation (12) reveals that the second 

The value of Cp* has to be determined from 

integral in equation (19) takes the finite tube length 
into account. 

Applying equations (19), (20) and (2a), (2b) yields 

SXAT = r(Yi2,~=conc, +ti> -Ll,n,, ). (28) 

The mass flow rates til.=conal. and ti,=,,,,, are the 
condensate streams crossing the borders L = const. 
and X = const. of condensation surface Lx, respec- 
tively. 

exp(-szcosd*) exp(X-E*cos4) = ___ _..__~ 

4* 
tan I 0 

(b 

0 

(20) ~L=-c”n~, - _ (&)‘;‘[&?Li (;)I’:” 

tan z u2 0 s x 

xsin* b sin) Z:,:,,,,,. dc (29) 
0 

$* = 2arctan [tan (z> ;jexp (X)1. (25) 

Thus, in the most general case of an inclined ellip- 
tical tube of finite length, the local heat transfer 
coefficient can be calculated using equations (19) -(22) 
and (13), (14). 

The area average heat transfer coelhcient can be 
found by the integration 

(26) 

Alternatively, this mean value can be calculated 
applying the energy balance for the heat transfer area 

(see equation (8)) 

Lx = LX :f tan*. 
0 

(27) 

The heat transferred to this area decreases the 
enthalpy of the condensing vapour 

At the top (4 = 0) and the bottom (4 = n) of the 
ellipse equation (6) together with the boundary con- 
dition (9a) gives 

4 
Z(d=O)= l-exp --X ( > 3 (21) 

4 
Z($=rc)=exp -X -1. 

( 1 3 

In the special case of a circular cylinder of radius 
R = a = b equation (6) turns to 

dZ az 4 
z+sinbG= ?(I -Zcos#). (23) 

Equation (23) was also derived and solved using a 
finite difference method by Hassan and Jacob [3]. 
The above derived analytical solution according to 
equations (19) and (20) now simplifies to 

and 

(24) 

and 

i 

I 

x sin * Z i:“,,,,, dL:. (30) 
0 

The numerical evaluation of equation (29) causes 
problems because for L = Cl, 2 (or 4 = rc) and X-t 
x the local film thickness 2 + x (equation (22)). 

This problem can be overcome by substituting 
L = U,,, or 4 = TI by values very close to this lowest 
point of the tube. Numerical calculations show that 
with $ = 3.124 sufficient accuracy can be expected. 
The relative errors of cl are then usually below 2%. 

4. RESULTS AND DISCUSSION 

For the illustration of the numerical results a dimen- 
sionless coordinate in U-direction (L/U ,: 2) and a heat 
transfer ratio (&,,/a@), are introduced. The heat 

transfer ratio is the ratio of two heat flow rates or two 
mean heat transfer coefficients. The subscript ‘EL 
refers to the actual elliptical tube. The subscript 
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L’“,,, 
FIG. 4. Heat transfer ratio as function of the dimensionless 

coordinate L/U,,, for various values of a/b < 1. 
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L’“l,2 
FIG. 5. Heat transfer ratio as function of the dimensionless 

coordinate L/U,,, for various values of a/b > 1. 

@E9 IS refers to an equivalent circular tube with the 
same condensation surface area or circumference. The 
heat transfer ratio is a criterion for the utility of an 
elliptical deformation of a circular tube. 

First the tube of infinite length is considered. 
Figures 4 and 5 show the heat transfer ratio as 

function of the dimensionless coordinate L/U,,, (in 
this case dimensionless flow path of the condensate) 
for various values of a/b. 

The decisive values (I&/C @), at L/U,,, = 1, 
which are ratios of the total area average heat transfer 
coefficients or the total heat fluxes, respectively, are 
plotted in Fig. 6 as function of the ratio a/b. In the 
limiting case a/b + co the calculation is no longer 
valid, because a condensate flow parallel to the wall 
surface is assumed which does not occur on a hori- 

1.2 

0.8 

0.0 0.4 0.8 1.2 1.6 2.0 

alb 

FIG. 6. Total heat transfer ratio (07sL/c? 
function of axis ratio a/b. @)‘=“” as 

zontal plane. Figure 6 shows that for a/b < 1 the total 
heat transfer ratio becomes > 1 and vice versa. An 
elliptical deformation of a circular tube improves heat 
transfer only if a/b < 1. For that reason ellipses with 
a/b > 1 are not considered any more. 

In the limiting case a/b -+ 0 the ellipse turns to a 
vertical plate with the maximum total heat transfer 
ratio 1.157. 

A more significant increase of heat transfer is 
obtained with inclined elliptical tubes of finite length, 
as shown in Figs. 7 and 8. 

In Fig. 7 the total heat transfer ratio is plotted as 
function of dimensionless tube length X for various 
values of a/b < 1. For X--f cc the heat transfer ratios 
assume the minimum values shown in Fig. 6. 

The effect of tube length is even better demonstrated 
in Fig. 8, where inclined elliptical tubes of finite and 
infinite length are compared. 

1. The local heat transfer coefficient for Nusselt 
type laminar film condensation in/on inclined ellip- 
tical tubes can be calculated analytically (equations 

(13), (14), (19), (20)). 
2. A comparison (Figs. 6 and 7) with an equivalent 

circular tube of equal condensation surface area 
clearly demonstrates the superiority of elliptical tubes 
(flattened at the side). 
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Note added in proof-After acceptance of this paper the 
paper ‘Role of surface tension and ellipticity in laminar film 
condensation on a horizontal elliptical tube’ (Yang and 
Chen, ht. J. Heat Mass Transfer 36,3141-3135 (1993)) has 
been published. It represents an interesting special case of 
our results for a horizontal elliptical tube. In this respect the 
paper Fort&r.-Ber. VDZ 19(7), VDI-Verlag (1986) from 
G. Fieg should be mentioned in which the calculation of 
laminar film condensation in/on inclined elliptical tubes (for 
infinite and finite tubes) under the effects of gravity and 
surface tension has been already considered. 
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FIG. 7. Total heat transfer ratio as function of dimensionless tube length X 
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FIG. 8. Ratio of heat fiux or heat transfer coefficients for finite and infinite elliptical tubes as function of 
dimensionless tube length for various axis ratios a/b. 
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